DM

Friday, June 7, 2013

How Immune System Peacefully Co-exists With 'Good' Bacteria?

by Bidita Debnath on? Research News Commensal bacteria is loaded in the human gut - "good" microbes that, among other functions, help the body digest food.  How Immune System Peacefully Co-exists With 'Good' Bacteria?
The gastrointestinal tract contains literally trillions of such cells, and yet the immune system seemingly turns a blind eye. However, in several chronic human diseases such as inflammatory bowel disease (IBD), HIV/AIDS, cancer, cardiovascular disease, and diabetes, the immune system attacks these normally beneficial bacteria, resulting in chronic inflammation and contributing to disease progression.

Now, researchers may finally understand an important mechanism that keeps this friendly truce intact - a finding that may lead to the development of new therapeutic strategies for such chronic diseases.


Gregory F. Sonnenberg, PhD, research associate in the Department of Medicine, Gastroenterology Division, and the Institute for Immunology at the Perelman School of Medicine, University of Pennsylvania, with postdoctoral researcher Matthew Hepworth, PhD, report in Nature that innate lymphoid cells (ILCs) directly limit the response by inflammatory T cells to commensal bacteria in the gut of mice. Loss of this ILC function effectively puts the immune system on an extended war footing against the good, commensal bacteria - a condition observed in multiple chronic inflammatory diseases.


ILCs are a class of rare immune cells that were first described a few years ago. Previous research has implicated these cells in regulating immune responses in the intestine, mostly through their ability to secrete immune-activating cytokines. But until now, researchers have had a hard time studying ILCs because it hasn't been possible to selectively eliminate them in the context of an otherwise intact immune system.


Sonnenberg, Hepworth, and their colleagues deleted a protein called RORt, required for one class of ILCs, in mice. RORt-deficient animals had exacerbated T cell responses against commensal bacteria and systemic inflammation. In contrast, deletion of previously identified ILC effector cytokines such as IL-22 and IL-17 did not elicit an immune response to commensal bacteria, suggesting the ILCs use an unidentified regulatory pathway.


When the team looked at what gene signatures the RORt-dependent ILCs expressed, they found high expression of major histocompatibility complex class II (MHCII) protein, which some cells use to display foreign proteins to the immune system and directly interact with T cells.


This, as with RORγt-deficient mice, selective deletion of MHCII in ILCs resulted in hyperactive T-cell responses directed against commensal bacteria and systemic inflammatory responses, all of which could be alleviated by depletion of commensal bacteria with broad-spectrum antibiotics. What's more, mice with the selective deletion of MHCII in ILCs also developed inflammatory bowel disease, which was driven by aberrant CD4+ T-cell responses to commensal bacteria.


This study is the first to selectively target ILCs in the presence of an intact immune system, and these findings suggest that under normal conditions, ILCs play a critical role in dampening the anti-bacterial T-cell response using MHCII. Indeed, when Sonnenberg's team looked at ILC activity directly, they found that MHCII+ ILCs could present foreign antigen to T cells and limit their expansion and pro-inflammatory properties.


Essentially, ILCs seem to instruct T cells to trust - that is, ignore -- commensal bacteria, thereby allowing the immune system to coexist with these foreign entities. Loss or dysregulation of ILCs, in turn, brought on by genetic or environmental factors such as diet or infection, for example, eliminates that protective action. This can lead to dysregulated immune activity and chronic inflammation.


"Inappropriate immune response to commensal bacteria and subsequent pathologic inflammation is a contributing factor to the pathogenesis and progression of many chronic human diseases, including inflammatory bowel disease, HIV/AIDS, viral hepatitis, cancer, cardiovascular disease, and diabetes," says Sonnenberg.


"This study provides new insight into the pathways that regulate immune responses to commensal bacteria and maintain tissue homeostasis" adds Hepworth.


Importantly, the study also identifies that MHCII+ ILCs are found in the intestinal tissues of healthy human donors. "Although it's still early days for this line of research, these findings provoke the hypothesis that MHCII+ innate lymphoid cells may be an important pathway to therapeutically target in the treatment of some chronic inflammatory diseases," suggests Sonnenberg. The Sonnenberg lab is now trying to establish if that is the case.


Source-Eurekalert

var xmlHttpvar imgpath,imagefunction RefreshImage(ImageId){image=document.getElementById(ImageId);//alert(ImageId);xmlHttp=GetXmlHttpObject();if (xmlHttp==null) { alert ("Your browser does not support AJAX!"); return; } var url="http://www.medindia.net/captcha/captcha.asp";url=url+"?x="+Math.random();imgpath=url;xmlHttp.onreadystatechange=stateChangedReg;xmlHttp.open("GET",url,true);xmlHttp.send(null);} function stateChangedReg(){if (xmlHttp.readyState==4){image.src = imgpath;}}function RequestCode(){xmlHttp=GetXmlHttpObject();if (xmlHttp==null) { alert ("Your browser does not support AJAX!"); return; } var url="http://www.medindia.net/captcha/reqimgvalue.asp";url=url+"?x="+Math.random();xmlHttp.onreadystatechange=stateChangedReq;xmlHttp.open("GET",url,true);xmlHttp.send(null);} function stateChangedReq(){if (xmlHttp.readyState==4){var seccode=xmlHttp.responseText;if(seccode==document.getElementById("scode").value){//alert(seccode + "same value");}else{document.getElementById("scode").value=xmlHttp.responseText;}}}function GetXmlHttpObject(){var xmlHttpNew=null;try { // Firefox, Opera 8.0+, Safari xmlHttpNew=new XMLHttpRequest(); }catch (e) { // Internet Explorer try { xmlHttpNew=new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) { xmlHttpNew=new ActiveXObject("Microsoft.XMLHTTP"); } }return xmlHttpNew;}function GetXmlHttpObject(){var xmlHttp=null;try { // Firefox, Opera 8.0+, Safari xmlHttp=new XMLHttpRequest(); }catch (e) { // Internet Explorer try { xmlHttp=new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) { xmlHttp=new ActiveXObject("Microsoft.XMLHTTP"); } }return xmlHttp;} X function fnsearch(){day1 = document.search.SelDay.value;month1 = document.search.SelMonth.value;year1 = document.search.SelYear.value;tmpdate=month1+"/"+day1+"/"+year1 fromdate=new Date(year1,month1-1,day1)if (!((fromdate.getDate()==day1)&&(fromdate.getMonth()+1==month1)&&(fromdate.getFullYear()==year1))){alert("Please Select a valid Date")document.search.SelDay.focus();return false;}tmpcatid=document.search.ncategoryid.value;tmpkeyword=document.search.keyword.value;document.search.action="http://www.medindia.net/news/newsday_list.asp?ddate="+tmpdate+"&ncategoryid=" +tmpcatid +"&keyword=" +tmpkeywordreturn true;}News Categories:?? Latest Health News Popular News AIDS/HIV News Alcohol & Drug Abuse News Alternative Medicine News Anti-Aging News Bird Flu News Cancer News Celebrity Health News Chikungunya News Child Health News Cholesterol News Clinical Trials News Corporate News Dengue News Dental News Diabetes News Diet & Nutrition News Drug News Education News Environmental Health General News Genetics & Stem Cells News Health Insurance News Heart Disease News Hospital News Hypertension News Indian Health News Lifestyle News Medical Gadgets Medical PDA News Medico Legal News Men?s Health News Mental Health News News on IT in Healthcare Nursing Profession News Obesity News Organ Donation News Research News Respiratory Disease News Senior Health News Sexual Health News Tropical Disease News Weight Loss Women Health News Child Health Center


View the original article here

No comments:

Post a Comment